Labelled non-classical logics
نویسنده
چکیده
منابع مشابه
Truth-values as Labels: A General Recipe for Labelled Deduction
We introduce a general recipe for presenting non-classical logics in a modular and uniform way as labelled deduction systems. Our recipe is based on a labelling mechanism where labels are general entities that are present, in one way or another, in all logics, namely truth-values. More specifically, the main idea underlying our approach is the use of algebras of truth-values, whose operators re...
متن کاملA Tableau Compiled Labelled Deductive System for Hybrid Logic
Compiled Labelled Deductive Systems (CLDS) provide a uniform logical framework where families of different logics can be given a uniform proof system and semantics. A variety of applications of this framework have been proposed so far ranging from extensions of classical logics (e.g. normal modal logics and multi-modal logics) to non-classical logics such as resource and substructural loogics. ...
متن کاملHypersequent and Labelled Calculi for Intermediate Logics
Hypersequent and labelled calculi are often viewed as antagonist formalisms to define cut-free calculi for non-classical logics. We focus on the class of intermediate logics to investigate the methods of turning Hilbert axioms into hypersequent rules and frame conditions into labelled rules. We show that these methods are closely related and we extend them to capture larger classes of intermedi...
متن کاملTruth Values and Connectives in Some Non-Classical Logics
The question as to whether the propositional logic of Heyting, which was a formalization of Brouwer's intuitionistic logic, is finitely many valued or not, was open for a while (the question was asked by Hahn). Kurt Gödel (1932) introduced an infinite decreasing chain of intermediate logics, which are known nowadays as Gödel logics, for showing that the intuitionistic logic is not finitely (man...
متن کاملLabelled Deduction over Algebras of Truth-Values
We introduce a framework for presenting non-classical logics in a modular and uniform way as labelled natural deduction systems. The use of algebras of truth-values as the labelling algebras of our systems allows us to give generalized systems for multiple-valued logics. More specifically, our framework generalizes previous work where labels represent worlds in the underlying Kripke structure: ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000